Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Analysis of spatial-temporal variation of urban heat island and driving mechanism in Zhengzhou in recent 17 years
ZHANG Yuchen, TIAN Hongwei
Journal of Arid Meteorology    2023, 41 (3): 403-412.   DOI: 10.11755/j.issn.1006-7639(2023)-03-0403
Abstract203)   HTML7)    PDF(pc) (11478KB)(600)       Save

In order to make an in-depth study of urban thermal environment of Zhengzhou, the temporal evolution and spatial distribution characteristics of urban heat island effect are analyzed based on the MODIS land surface temperature product (MYD21A1), and the causes and driving mechanism of urban heat island effect are discussed from both natural and anthropogenic factors in combination with the data of land use/land cover types and Zhengzhou statistical yearbooks. The results show that there is no significant difference in the spatial distribution of annual mean heat island intensity between day and night in Zhengzhou, and the areas with stronger heat island intensity or above are mainly in the main urban area. The temporal variation of heat island effect in Zhengzhou has diurnal and seasonal differences. During the daytime, the proportion of heat island area increased insignificantly in spring and significantly in summer, and decreased insignificantly in autumn and winter. In spring, summer and autumn, the proportion of heat island area at night increased insignificantly, while in winter, the heat island effect was weak and there was no obvious change characteristics. The inter-annual variation of urban heat island proportion index of Zhengzhou was consistent with heat island intensity. The urban heat island proportion index during daytime and nighttime was higher in summer, then in spring, autumn and winter in turn. The heat island effect of different land use/land cover types was obviously different, with the highest in urban and rural building land, followed by cultivated land, and the lowest in woodland and water area. There is a negative correlation between vegetation coverage and land surface temperature. Solar radiation intensity has a positive driving effect on urban heat island effect, and population density, GDP and built-up area are all positively correlated with urban land surface temperature.

Table and Figures | Reference | Related Articles | Metrics